Keras Theano 输出中间层结果
本站寻求有缘人接手,详细了解请联系站长QQ1493399855
Keras & Theano get output of an intermediate layer
1.使用函数模型API,新建一个model,将输入和输出定义为原来的model的输入和想要的那一层的输出,然后重新进行predict.
import seaborn as sbn import pylab as plt import theano from keras.models import Sequential from keras.layers import Dense,Activationfrom keras.models import Modelmodel = Sequential() model.add(Dense(32, activation='relu', input_dim=100)) model.add(Dense(16, activation='relu',name="Dense_1")) model.add(Dense(1, activation='sigmoid',name="Dense_2")) model.compile(optimizer='rmsprop',loss='binary_crossentropy',metrics=['accuracy'])# Generate dummy data import numpy as np #假设训练和测试使用同一组数据 data = np.random.random((1000, 100)) labels = np.random.randint(2, size=(1000, 1))# Train the model, iterating on the data in batches of 32 samples model.fit(data, labels, epochs=10, batch_size=32) #已有的model在load权重过后 #取某一层的输出为输出新建为model,采用函数模型 dense1_layer_model = Model(inputs=model.input,outputs=model.get_layer('Dense_1').output) #以这个model的预测值作为输出 dense1_output = dense1_layer_model.predict(data)print(dense1_output.shape) print(dense1_output[0])